Reverse
= pla|lpl={=]p]]]« RE—
191

Take a peek under the hood!

Introduction

00 (7=

Compilers and
Assembly

What is reversing?

The compilation process and
machine code

Reversing
Basics

o000 Q4

Live Demo

Disassembling machine code,
tools, and analysis

Reversing a compiled
executable

IN'T'F\‘GDUC'T'IGN

eeeeeeeeeeeeeeeeeeeeeee

Reverse Engineering

e The process of analyzing the internals of a piece of software, to figure out how it does what it does
e \Various processes and tools for doing so
o Ghidra, IDA Pro, Radare, etc.

e Static and Dynamic Analysis

,—ﬁ—\A Ao ~ //7 S
2 m‘)

GHI

Compilers & ASIM

How do processors execute code? How do programming
languages compile to executable code?

o000 O

Compiled Langquages

e Some high level languages are compiled into machine code
¢ C, C++, Go, Rust
e Machine code is directly interpreted by the processor

o EXE, DLL, OSX, ELF files contain machine code

e Machine code is composed of instructions that the processor executes
o mul (multiply), add (add), mov (move), jmp (jump)

e The format and set of instructions is defined by the ISA

o) Instruction Set Architecture

o000 O

How Does Compilation Work-

: #include <string.h> Source
e Preprocessing flle <

A, :] #define MAX_LEN 32
o Stripping comments, preprocessor directives
e Compilation
o AST construction, intermediate representation (IR)

Pre-processor

® Assembly
o From IR, to assembly, to machine code (object files) i
e Linking
o Stitching object files together, adding dynamic library entries
= Assembler
code .0
executable

file

Assembly

° Machine code consists of non-human readable instructions
e Assembly is essentially human-readable machine code
o An architecture-specific programming language

® x86, ARM, MIPS, RISC-V, etc.

GNU nano 3.2

.text
_start

edx, len
ecx, msg
ebx, 1
eax, 4

0x80

eax,
0x80

.data

"Hello World!"

hello.asm

Reversing Basics

How do we disassemble executables? Can we derive the
original source code from a compiled executable?

A 30,000 foot view

Sl

L Static Analysis 3|geINdaxXa

o Disassembly

a\ur

o Decompilation

e Dynamic Analysis

o Debugging (GDB)

o System call tracing s|duio)

JI3|quIBSSY

o Network activity tracing

Jossa0ud-aid

BRCTIN
924n0s

How to Read Assembly

Registers
o eax, ebx, ebp, esp (x86)
Basic instructions and their operands
o e.g. mul eax, ebx
The C Calling Convention (cdecl)
o How function calls are implemented in C
o How accessing variables work
Executable File Sections

o What each section does and its properties
o (for ELF) .text, .data, .bss, .rodata

0
s
]
=
2
o
Q
o
Q
o]
o
o
=
=1
Q.
L
©
o
]
c
o
)

(stack pointer)

(base pointer)

+———— 16 bits —

o000 O

1 More Thing - The Stack

e Some memory space used primarily for:
o Local variables T
o Passing function arguments

® Behaves like a stack
o Push & Pop operations

e Grows into lower address space
o RBP is higher than RSP

uninitialized |n|tlagzeé:1xg>czero
data(bss) y
E
data program file by

text exec

Memory layout of a program

Reading ASIM

o

eax,eax

Xxchng rax, rax

https://www.xorpd.net/pages/xchg_rax/snip_00.html

Translating C to ASM

e While loops, For loops
e (onditions
e Function Calls

https://godbolt.org/

https://godbolt.org/

Decompilation

e Inverse operation of compilation - generating high level source code from a compiled binary
e Tools:

o IDA Hex Rays

o Ghidra
e Translation to high level pseudocode may not be 1-to-1

o We'll be taking a look at this

#include <stdio.h> printSpacer: ,
int __fastcall printSpacer(int al)
{

void printSpacer(int num){ int i: // [rsp+8h] [rbp-8h]
for(int 1 = 0; 1 < num; ++1){

printf("-"); for (i =0; 1 <al; ++i)
} printf("-");

: T return printf("\n");
printf("\n"); }

main:
int main() int __cdecl main(int argc, const char **argv, const char **envp)
{
{
char* string = "Hello, World!";
for(int 1 = 0; 1 < 13; ++1){
printf("sc", string[i]); :°r< 1=0; 1 <13; #++1)
for(tnf] = }+1;] <.13;43++){ —
printf("sc", string[j]); printf("sc", (unsigned int)aHellowWorld[i], envp);
; while (v4 < 13)
pl'intf("\n"); printf("%sc", (unsigned int)aHelloworld[v4++]);

printSpacer(13 - i); printf(*\n*); _
printSpacer(13 - i);
} }

return 0;

int v4; // [rsp
signed int i;

return 0;

ctfl0l.org

What's The Point”?

e Malware analysis
® Become a better developer
o Understanding how programs may be vulnerable
e Embedded programming
TGS

o https://ctf.edscutm.com/

https://ctf.gdscutm.com/

Cool Applications

‘ [\ ’
Reverse Engineering \

& B -
5 Game Patching s
r Tutorial <
= h o -.i? gHIDT

B

http://www.youtube.com/watch?v=cwBoUuy4nGc

THANKS!

@gdscutm

(3= This presentation template was created by
SIEGLEEEGR including icons by and infographics
& images by

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

