
Reverse 
Engineering

101
Take a peek under the hood!



Introduction

What is reversing?

Compilers and 
Assembly

The compilation process and 
machine code

Reversing 
Basics

Disassembling machine code, 
tools, and analysis

Live Demo

Reversing a compiled 
executable

01 02

03 04



INTRODUCTION
What is reverse engineering?



Reverse Engineering
● The process of analyzing the internals of a piece of software, to figure out how it does what it does

● Various processes and tools for doing so

○ Ghidra, IDA Pro, Radare, etc.

● Static and Dynamic Analysis

 



Compilers & ASM
How do processors execute code? How do programming 

languages compile to executable code?



Compiled Languages
● Some high level languages are compiled into machine code

○ C, C++, Go, Rust

● Machine code is directly interpreted by the processor

○ EXE, DLL, OSX, ELF files contain machine code

● Machine code is composed of instructions that the processor executes

○ mul (multiply), add (add), mov (move), jmp (jump)

● The format and set of instructions is defined by the ISA

○ Instruction Set Architecture



How Does Compilation Work?
● Preprocessing

○ Stripping comments, preprocessor directives
● Compilation

○ AST construction, intermediate representation (IR)
● Assembly

○ From IR, to assembly, to machine code (object files)
● Linking

○ Stitching object files together, adding dynamic library entries



Assembly
● Machine code consists of non-human readable instructions

● Assembly is essentially human-readable machine code

○ An architecture-specific programming language

● x86, ARM, MIPS, RISC-V, etc.



Reversing Basics
How do we disassemble executables? Can we derive the 

original source code from a compiled executable?



A 30,000 foot view

● Static Analysis

○ Disassembly

○ Decompilation

● Dynamic Analysis

○ Debugging (GDB)

○ System call tracing

○ Network activity tracing



How to Read Assembly

● Registers
○ eax, ebx, ebp, esp (x86)

● Basic instructions and their operands
○ e.g. mul eax, ebx

● The C Calling Convention (cdecl)
○ How function calls are implemented in C
○ How accessing variables work

● Executable File Sections
○ What each section does and its properties
○ (for ELF) .text, .data, .bss, .rodata



1 More Thing - The Stack

● Some memory space used primarily for:
○ Local variables
○ Passing function arguments

● Behaves like a stack
○ Push & Pop operations

● Grows into lower address space
○ RBP is higher than RSP

Memory layout of a program



Reading ASM







xchng rax, rax

https://www.xorpd.net/pages/xchg_rax/snip_00.html


Translating C to ASM

https://godbolt.org/

● While loops, For loops
● Conditions
● Function Calls

https://godbolt.org/


Decompilation
● Inverse operation of compilation - generating high level source code from a compiled binary

● Tools:

○ IDA Hex Rays

○ Ghidra

● Translation to high level pseudocode may not be 1-to-1

○ We’ll be taking a look at this



ctf101.org



What’s The Point?

● Malware analysis

● Become a better developer

○ Understanding how programs may be vulnerable

● Embedded programming

● CTFs!

○ https://ctf.gdscutm.com/

https://ctf.gdscutm.com/


Cool Applications

http://www.youtube.com/watch?v=cwBoUuy4nGc


CREDITS: This presentation template was created by 
Slidesgo, including icons by Flaticon, and infographics 

& images by Freepik

THANKS!

@gdscutm

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

